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The concentrations of ensembles of n surface atoms are usually assumed to be proportional to (1 
- 0p or (1 - r&B), where 8 is the coverage of surface species passivating the surface atoms. In the 
present work a poison lattice model, taking into account the form of the ensembles, the ordering of 
the passivating atoms, and their radius of influence, is suggested. The general expression for 
ensemble concentrations is of the form &q,(l - mf3)ki, where yi is a weight factor, m is the 
reciprocal coverage by the passivating atoms when they saturate the surface, and the k,‘s are 
certain numbers (in general different from the number of atoms in the ensemble). In Part 11 (J. 
Catal., 104, 466 (1987)) the expressions are compared with Monte Carlo simulations and with 
experimental results. Also a short-range interaction model, giving analytical expressions for the 
concentrations of active sites and active pairs of sites, derived for the case where the passivating 
atoms are deposited randomly, but not on neighbor sites, on the (100) surface of a cubic crystal, 
i.c., corresponding to the local order in the c(2 x 2) structure, is discussed. 62 19x7 AL.ldW,,iC PlC\h. Inc. 

I. INTRODUCTION 

The effects of alloying and poisoning of 
metal catalysts are classical subjects of dis- 
cussion. Usually in such discussions dis- 
tinction has been made between the influ- 
ence of geometric and electronic effects on 
the rate of catalytic reactions. Thus in some 
of the early works, 30-50 years ago, Balan- 
din in his multiplet theory (1) and Kobozev 
in his ensemble theory (2) stressed the im- 
portance of geometric factors. With the ad- 
vent of the band theory of the electronic 
states of solids, catalytic activity of transi- 
tion metals and alloys containing transition 
metals were often related to the filling of the 
d-band (3). 

In recent years, progress in experimental 
techniques and in theory has led to a modi- 
fied picture in which the geometric and 
electronic effects have acquired a new 
meaning. First, it was found that the simple 
band theory did not work for many alloys. 

The atoms keep much of their individuality 
when they enter into an alloy. A surface of 
a random alloy AB, such as, e.g., Ni-Cu, 
can for the purpose of qualitatively describ- 
ing chemisorption and reactions on it be 
pictured as a random mixture of atoms A 
and B each with electronic (and thus also 
chemical) properties resembling those of 
pure A and pure B, respectively (4). 

From recent self-consistent quantum me- 
chanical calculations has emerged a “lo- 
cal” description of the effect of foreign sur- 
face atoms which act as poisons or 
promoters. Norskov et al. (5) have shown 
that electropositive atoms, like K, or elec- 
tronegative atoms, like P, S, Cl, and 0, ad- 
sorbed on metal surfaces will locally lower 
or increase, respectively, the electrostatic 
potential at the surface and thereby locally 
promote or poison, respectively, the chemi- 
sorption and dissociation of electron accep- 
tor molecules, like HZ, Oz. NZ, and CO. 
Calculations indicate that the promoting or 
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poisoning effect falls off within a few 
atomic distances from the foreign atom on 
the surface. 

On the surface of a random alloy AB, 
“ensembles” of A atoms, consisting of a 
number of neighboring A atoms, will be 
present. Also on a metal surface with a ran- 
dom distribution of poisoning atoms ensem- 
bles of nonpoisoned neighboring metal at- 
oms will be present. It has been found that 
the rate measured per active surface metal 
atom for some processes catalyzed by a 
transition metal A is affected very little by 
alloying A with an inactive metal B, while 
the rate per A atom in the surface decreases 
drastically for other processes when the B 
atoms are present in the surface (6, 7). The 
former processes are said to belong to 
group I and the latter to group II. The 
strong B atom dependence of the rate of 
group II processes is usually explained by 
assuming that the presence of ensembles of 
A atoms is necessary for the process. The 
much smaller dependences on alloying ob- 
served for group I processes are usually 
said to be the result of a “ligand” effect. 

Also the strong influence of poisons on 
many catalytic processes has often been ex- 
plained by assuming that the presence of 
ensembles comprising a minimum number 
of unpoisoned atoms is necessary for the 
process to take place. 

Attempts to determine the critical size of 
the active ensembles have usually been 
based on expressions of the form 

r = ro(l - 00) 

or of the form 

(1) 

r = ro(l - O)n (2) 

or combinations of (1) and (2). r. is the rate 
when no passivating or inactive atoms are 
present in the surface, and 8 is the cover- 
age of the surface by passivating or inactive 
atoms. Two different coverage parameters 
are used in the following, (i) 8 is the ex- 
pected (average) number of inactive or pas- 
sivating surface atoms divided by the num- 
ber, NM, of atoms in a complete surface 

layer of active metal atoms without inactive 
or passivating atoms. (ii) 0, is the expected 
(average) number of inactive or passivating 
atoms divided by the number of atoms in an 
ideal saturation layer equal to the number, 
A$, of possible sites for the inactive or pas- 
sivating atoms. In many applications NP is 
smaller than NM, i.e., Np = NM/m, where m 
is an integer larger than 1 and consequently 
0, = me. 

Maxted (8) used an expression of the 
form (1) to correlate the activity of deacti- 
vated catalysts with the concentration of 
poison on the catalyst. A simple Langmuir 
analysis leads to expression (2) in which n 
then is the number of metal atoms in the 
active ensemble. Expression (1) can be re- 
garded as an approximation to (2) valid only 
at small coverages, i.e., a = n, or it can be 
used to describe in an approximate way a 
ligand effect, i.e., that more than one site is 
made inactive by a poison or inactive alloy 
atom or that the electronic properties of the 
neighboring metal atoms are changed. 

Martin (9) used a combinatorial expres- 
sion to determine the concentration of non- 
poisoned ensembles. A (100) metal surface 
was considered and it was assumed that the 
poisoning atoms could chemisorb on the 
fourfold hollow sites of the surface. In the 
limit of a large surface, the classical expres- 
sion (2) was obtained for nonpoisoned sin- 
gle atoms, pairs, and m x m ensembles 
with the exponent n = (m + 21 - I)?, where 
1 is the neighbor number of the most distant 
metal atom influenced by the poisoning 
atom. 

Martin et al. (10) used the same combina- 
torial expression to derive a particle size 
dependence for the concentration of non- 
poisoned ensembles. This theory is briefly 
discussed in Part II (11). 

Later, Martin (12) used a similar combi- 
natorial expression to determine the proba- 
bility that a square ensemble is active when 
a distribution of a constant number of equal 
square islands of poisoning atoms is present 
on the surface and from this Martin derived 
an expression for the concentration of non- 
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poisoned ensembles on a surface poisoned 
in this special way. This theory is also dis- 
cussed in Part II. 

Many LEED studies of clean transition 
metal surfaces with foreign atom overlayers 
show that long-range ordered surface struc- 
tures with lattice unit cells larger than that 
of the clean surface are usually formed (23). 
Thus if sulfur atoms are chemisorbed at low 
pressure at room temperature on the 
Ni(lOO) surface a ~(2 x 2) structure, corre- 
sponding to a Ni : S surface atom ratio of 
4: 1 at saturation, is formed at low cover- 
ages. At higher coverages the diffraction 
pattern changes into the one corresponding 
to the c(2 x 2) structure with a Ni : S sur- 
face atom ratio of 2 : 1 at saturation (14, 25). 

These observations imply that two sulfur 
atoms cannot chemisorb on neighboring 
sites and also that the final sticking of the 
sulfur atoms on allowed sites cannot be 
completely random as the diffraction pat- 
tern indicates order of macroscopic range. 

The possible influence on the ensemble 
concentration due to mutual interaction of 
the passivating atoms, or a passivation 
range, or of the shape of the active ensem- 
bles has not been taken into account in pre- 
vious theories. 

In the present paper two new models of 
ensemble concentrations on the surfaces 
modified by inactive or poisoning atoms are 
presented. In the following paper (Part II) 
(II) the concentration of “active” ensem- 
bles of a specified form and size is calcu- 
lated for some important cases and compar- 
isons are made with stochastic numerical 
simulations and available experimental 
data. 

In the first model, the poison lattice 
model (PLM) described in Section 2, the 
repulsive interaction between the poisoning 
atoms and the ordering tendency are ap- 
proximately taken into account by restrict- 
ing the positions of the poisoning atoms to 
the sites of a lattice corresponding to the 
positions of the poisoning atoms in the ex- 
pected surface structure. The crystallogra- 
phy of the surface and the form and size of 

the ensembles have to be specified. It is fur- 
ther assumed that the passivating atoms 
have a radius of influence, i.e., one atom 
can passivate not only the site on which it is 
located, but also the nearest neighbor at- 
oms or sites, and possibly also the next 
nearest neighbors or sites, etc. 

If a finite metal surface lattice is consid- 
ered, effects due to the finite size can be 
taken quantitatively into account as illus- 
trated in the example in Section 2. 

In the second model, the short-range in- 
teraction model (SRIM) described in Sec- 
tion 3, approximate, but highly accurate, 
expressions are derived for the concentra- 
tions of active sites and pairs as functions 
of the coverage of the surface by the poi- 
soning atoms. In this model it is assumed 
that the poisoning atom passivates not only 
its own site but also the nearest neighbor 
sites. The poisoning atoms are assumed to 
occupy the sites of the surface at random 
while respecting the mutual repulsion be- 
tween the poisoning atoms; i.e., a poison- 
ing atom cannot have another poisoning 
atom on a neighbor site. The principal dif- 
ference between the PLM and the SRIM is 
that in the latter model any site without poi- 
son atom neighbors can be occupied by a 
poison atom. 

2.POISONLATTICEMODELFORENSEMBLE 
CONTROL 

In this section the poison lattice model is 
described without going into mathematical 
details. In Appendix A the mathematics of 
the model are presented in a rigorous way. 

A finite flat surface formed by metal at- 
oms is considered. An n-ensemble on the 
surface is defined as n neighboring surface 
metal atoms or n neighboring hollow sites 
between the metal atoms. An ensemble is 
characterized by its number of atoms (sites) 
as well as by the relative positions of the 
atoms (sites), i.e., its shape, e.g., row, 
equitriangular, rectangular, hexagonal. 

Consider, as an example, an M x M qua- 
dratic lattice of hollow sites between metal 
atoms. Let n be the set of all possible rec- 
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tangular 3 x 2 ensembles of sites. R will 
then comprise 2 x (M - 2) x (M - I) dis- 
tinct ensembles. 

It is assumed that the poisoning atoms 
can occupy the sites of a sublattice of the 
lattice of hollow sites. This sublattice may 
be identical to the lattice of hollow sites but 
it may also have a unit cell larger than that 
of the metal atom lattice. The poison lattice 
can thus be chosen in such a way that the 
metal surface plus the fully occupied poison 
lattice corresponds to the chemisorption 
structure inferred from LEED measure- 
ments. For example, if sulfur poisoning of a 
(100) surface is considered at conditions 
where the c(2 x 2) array is known to be 
formed, only every second hollow site is 
assumed to belong to the poison lattice. 

The probability 8, of adsorption of a poi- 
soning atom on a site of the poison lattice is 
assumed to be independent of the position 
of the site and of the occupation of the 
other sites. 

It is assumed that the poisoning atom can 
passivate neighboring atoms (sites) within a 
certain distance R, called the passiuation 
range. If one or more of the atoms (sites) of 
an ensemble are passivated, then the en- 
semble is assumed to be passivated; other- 
wise it is considered to be active. Figure 1 
shows, as an example, the passivation pat- 
terns of the threefold sites between the at- 
oms of a hexagonal surface lattice of metal 
atoms for various values of R. 

The probability pn that an ensemble w se- 
lected at random from the set fi is active is, 
as shown in Appendix A, given by 

Pn = go 4kO - Op)k. (3) 

The exponent k, called the exposure num- 
ber of the ensemble, is equal to the number 
of poison lattice sites within the passivation 
range distance of at least one atom (site) of 
the ensemble. The weight factor qk is the 
probability that the ensemble o, selected at 
random, has the exposure number k. The 
sum of the expression (3) contains only a 
few terms with qk different from zero. 

/ ~-\ 
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nmtsl stem 

@ paasivating atom 

FIG. I. Sites passivated by an atom on a hexagonal 

surface for various passivation radii R. 

The following simple example illustrates 
the determination of the k’s and the qk’s: A 
quadratic surface with M x M = 10 X 10 
metal atoms (shown as open circles in Fig. 
2) is considered. It is assumed that the poi- 
soning conditions correspond to the forma- 
tion of a c(2 x 2) structure. Accordingly the 
lattice of the sites for the poisoning atoms is 
the lattice of crosses in Fig. 2. It is assumed 
that R = X%2 x the unit length of the metal 
surface lattice. This passivation range cor- 
responds to the passivation of nearest 
neighbor metal atoms (in contact with the 
poisoning atom) only. 

Far from the edges of the metal lattice 2 
x 2 ensembles of metal atoms can be ar- 
ranged in two ways with respect to the poi- 
son lattice and with k = 4 and 5, respec- 
tively, as shown by ensembles 1 and 2 in 
Fig. 2. The total number of 2 X 2 ensembles 
on the surface is (10 - 1) x (10 - 1) = 81. 
The ensembles along the edges have expo- 
sure numbers different from those far from 
the edges. The four corner ensembles have 
k = 2, while the 28 edge ensembles have 
k = 3. Of the remaining 49 ensembles, 25 
have k = 5 and 24 have k = 4. Thus the final 
expression for the concentration of active 
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2 X 2 ensembles is 

p2x2(M = 10) = 25/81(1 - 29)5 + 24/81(1 
- 20)4 + 28/81(1 - 28y + 4/81(1 - 28)2. 

(4) 

If we increase the number of metal sur- 
face atoms to infinity then the edge and cor- 
ner contributions disappear and the infinite 
lattice expression becomes 

p&l!f --, 00) = f[(l - 2ey + (1 - 2e)y 
= (1 - e)(l - 28)4. (5) 

Values of k and qk for a number of other 
important cases with square or hexagonal 
surface atom or site lattices can be deter- 
mined from the tables in Part II (II). 

3. STATISTICAL SHORT-RANGE 
INTERACTION MODEL FOR ENSEMBLE 

CONTROL 

The model described in Section 2 has the 
important property of conforming when the 
poison lattice is saturated with the long- 
range order, which is the basis of the LEED 
observations. It is obvious, however, that 
at low poison coverages this model will not 
correspond to a physically probable poison 
distribution when the unit cell of the poison 
lattice is larger than that of the metal sur- 
face lattice. 

Models in which the sites for deposition 
of the poison atoms are selected at random, 
but with the restriction that the deposition 
cannot take place if the site is passivated by 
a previous deposition on or near the site, 
may in many cases be more realistic at low 
poison coverages. A particular example of 
such a short-range interaction model is con- 
sidered below. A more extensive treatment 
of this type of model with derivations of 
expressions for several types of ensembles 
on square as well as hexagonal lattices will 
be published elsewhere (16). 

As an example, the important case 
where, on a square lattice, poison deposi- 
tion on nearest neighbor sites of the sites 
with a poison atom is prohibited, is treated 
below. Approximate, but very accurate, 

0 
Metal atom 

@a 
Metal atom of 2 x 2 ensemble 

+ Site for poison atom 

03 Site for poison atom passivating 
naarast 2 x 2 enswnble 

FIG. 2. 10 x 10 square metal atom lattice with five 
different 2 x 2 metal atom ensembles and a poison 
lattice consisting of every second fourfold hollow site 
(+). k values for R = V’%2: 1, internal ensemble with k 
= 4; 2, internal ensemble with k = 5; 3, edge ensemble 
with k = 3; 4, edge ensemble with k = 3; 5, corner 
ensemble with k = 2. 

formulas for the concentrations of active 
single sites (singletons) and pairs of active 
sites (doublets) are derived. The self-poi- 
soning of the poison deposition with a pas- 
sivation range equal to the nearest neighbor 
distance corresponds to the short-range or- 
der in the c(2 x 2) structure of the (100) 
surface of cubic crystals. 

The probability that a site is active is 
called ps, and the probability that a pair of 
neighboring sites are active is called pd. 

As the neighbor sites of an active ensem- 
ble must be unoccupied the following sug- 
gestive notation is used: 

A singleton corresponds to the presence 
of the configuration of unoccupied sites 



STATISTICAL MODELS FOR ENSEMBLE CONTROL, I 459 

shown in Eq. (6), while a doublet corre- 
sponds to the configuration shown in Eq. 
(7). Here P means the probability of the 
configuration shown in parentheses, sub- 
script 2 refers to the two-dimensional lat- 
tice, o means an unoccupied site, and x a 
site with an unspecified state of occupation. 

Now, 

Ps = E2(0!0) = P?(O$O) . PI (xix/o;o). 

P2( O / x, x:x ago means the conditional proba- 

bility that the three vertical sites of the sin- 
gleton configuration (6) are unoccupied 
when the three horizontal sites are unoccu- 
pied. 

The following approximations, both heu- 
ristically plausible, are made: 

p2 (0;o) - P,(ooo) 

- P,(ooo~xox), 

where subscript 1 refers to the one-dimen- 
sional model discussed in Appendix B. 
Thus, 

PS - Pl(OO0) * P,(ooo~xox). 

By inserting the expressions B4 and B5 in 
Appendix B for the factors on the right- 
hand side the following expression is ob- 
tained: 

Ps = (1 - (3) (I&!?)’ . (8) 

An expression for pd is obtained in a similar 
way: 

Pd = p2 (O$;O) ’ P2 (X#XIO$O) 

. P2 (x~~xlo~~o) - P,(oooo) 

- P,(oooo) . P,(ooo~xox) 
. P,(xooox~oxoxo) 

which by means of B4, B5, and B7 finally 
gives 

pd = (1 - 0) (e)’ 
1 

(1 - 0)9 * 
l+ (1 - 28)2 

4. DISCUSSION 

It has been known for a long time from 
LEED observations that many adsorbates 
modifying the catalytic properties of transi- 
tion metal surfaces have a tendency to be 
chemisorbed into surface structures with 
unit cells larger than that of the clean sur- 
face. This fact, however, has not been 
taken into account in previous discussions 
of the influence of inactive or passivating 
surface atoms on the rate of catalytic reac- 
tions via an ensemble dependence. 

The models of ensemble concentrations 
described in the previous sections take this 
tendency into account in an approximate 
way. The accuracy of the approximations is 
difficult to judge as very limited information 
is available regarding the process of the for- 
mation of the surface structure with the 
chemisorbed atoms and its dynamical be- 
havior under reaction conditions. Several 
possibilities can be envisaged. The simplest 
corresponds to the SRIM described in Sec- 
tion 3, i.e., random occupation of sites with 
the constraint that an atom cannot be 
chemisorbed within the observed minimum 
distance from another chemisorbed atom. 

The derivation of formulas for the con- 
centration of active single sites and pairs of 
active sites was indicated for the case 
where a chemisorbed, passivating atom 
prevents the chemisorption of passivating 
atoms on nearest neighbor sites on a square 
lattice. Formulas for other cases will be 
published elsewhere. A drawback of this 
approach is that random chemisorption is 
not compatible with the fact that LEED 
patterns demonstrate the presence of sur- 
face structure with long-range order. On 
the other hand it is also observed that the 
LEED pattern corresponding to the surface 
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structure of the chemisorbed atoms is, in 
many cases, replaced by the pattern corre- 
sponding to the clean surface when the sur- 
face is heated to high temperature (17-19). 
This may indicate that thermally generated 
disorder washed out the long-range order of 
the chemisorption structure, making it 
plausible that the SRIM might constitute a 
reasonable description of the distribution of 
the passivating atoms at the temperature of 
many reactions. 

Introducing surface mobility of the ad- 
sorbing species before they are fixed on a 
surface site, i.e., assuming that chemisorp- 
tion takes place through a mobile precur- 
sor, may enhance the growth of domains 
with sufficient long-range order for the for- 
mation of a LEED pattern. It is therefore of 
interest to investigate the effect of precur- 
sor mobility on the SRIM. This is done by 
means of Monte Carlo simulations in Part II 
UI). 

The PLM developed in Section 2 has sev- 
eral advantages. It is generally applicable 
and formulas for any ensemble on any sur- 
face and passivation lattice and with any 
passivation range can easily be derived. 
The main assumption of this model, that the 
possible sites for passivating atoms form a 
fixed lattice with a unit cell equal to or 
larger than that of the clean surface, is in 
accordance with the LEED observations of 
long-range order at coverages near satura- 
tion. The fixed lattice assumption should 
not influence the accuracy of the formulas 
at small coverages unless long-range forces 
result in island growth even at small cover- 
ages. The correction at high coverages due 
to a few boundaries between domains not in 
registry is also expected to be small; e.g., in 
the case of the c(2 x 2) chemisorption 
structure on a (100) surface a boundary be- 
tween two domains not in registry will give 
no correction to the expression for the con- 
centrations of active sites and of pairs of 
active sites. 

The PLM expression (3) for the concen- 
tration of ensembles can be considered as a 
generalization of the classical expression 

(2) to situations where ordering forces regu- 
late the surface distribution of the passivat- 
ing atoms and to situations where the pas- 
sivating atoms, besides blocking their own 
sites, passivate nearby sites or metal at- 
oms. 

Hence, when experimental results are 
analyzed using expression (2), the exponent 
n need not correspond to the number of at- 
oms in the critical ensemble, as is usually 
assumed. Moreover II need not be an inte- 
ger, The observed exponent depends, in 
general, on the structure of the surface and 
the structure of the layer of passivating at- 
oms, on the passivation range, on the shape 
of the critical ensemble, and on the surface 
coverage by passivating atoms. 

In the simple PLM discussed at length in 
the present paper and in the succeeding pa- 
per (II), the passivating probability of the 
poison atoms is assumed to be zero outside 
and equal to 1 inside the passivation range. 
It is possible, as indicated by the expres- 
sions (A8) and (A9) in Appendix A, to gen- 
eralize the PLM to take into account a grad- 
ual distance dependence of the passivation 
probability. A more general theory of this 
kind is obviously also more realistic, but it 
is at present too difficult to determine inde- 
pendently the extra parameters, p(r), of ex- 
pression (A9), to make such a generaliza- 
tion useful. 

5. CONCLUSIONS 

New theoretical models for the calcula- 
tion of surface concentrations of ensembles 
of atoms or sites, active in chemisorption or 
reaction on partially passivated surfaces, 
are proposed. The models take into account 
the observation that chemisorbed atoms of- 
ten form surface structures with unit cells 
larger than that of the clean metal surface. 
The ensemble concentration depends on 
the form and size of the ensembles. A pas- 
sivation range has to be specified for the 
poison atoms. When the theory is applied 
to a finite surface lattice, ensembles near 
comers and edges will have a smaller prob- 
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ability of being passivated than ensembles 
far from edges. 

Another type of model, called short- 
range interaction models and correspond- 
ing to a more random deposition of the poi- 
son atoms, is briefly discussed. 
Expressions for the concentrations of ac- 
tive sites and pairs on a (100) surface of a 
cubic crystal, on which the poison atoms 
cannot occupy neighbor sites, are given. 

APPENDIX A 

MATHEMATICALTREATMENTOFTHE 
STOCHASTIC POISON LATTICE MODEL 

The models are based on two basic sets, 
the set AM of M-sites and the set Ap of P- 
sites. The M-sites correspond to either the 
positions of the metal surface atoms or to 
the hollow sites between them. The P-sites 
correspond to possible surface locations for 
the poison atoms. In all concrete cases, AM 
will be a set of lattice points in a regular 
planar lattice and hp will either coincide 
with Au or with the dual lattice of AM, or hp 
will only occupy a part of one of these lat- 
tices. 

The number of M-sites and P-sites is de- 
noted by NM and Np, respectively. It is as- 
sumed that the geometrical structure given 
by AM and AP, in particular the size num- 
bers NM and Np, are fixed throughout the 
analysis. 

An ensemble w is defined as a subset of 
hill. The number of M-sites in w is denoted 
by n(w). A shape R is a collection of ensem- 
bles all containing the same number of at- 
oms or sites. For example, R could be the 
shape of 2 x 2 ensembles in a quadratic 
lattice. The common value of n(w) for w E 
R is called the ensemble size and is denoted 
by n. The number of ensemble locations, 
i.e., the number of ensembles in 0, is de- 
noted by N. Thus, if n is the shape of sin- 
gletons (1 x 1 ensembles), the ensemble 
size is 1 and the number of ensemble loca- 
tions N is equal to NM. Each ensemble may 
be subject to passivation if nearby P-sites 
are occupied. 

The basic assumptions are as follows: 

(i) M-sites are occupied independently of 
each other and with the same probability q. 

(ii) P-sites are occupied independently of 
each other and with the same probability 
6. 

(iii) An ensemble of shape rR. is selected at 
random with all N possibilities equally 
likely. 

(iv) The random mechanisms of i-iii are 
independent of each other. 

(v) Each occupied P-site passifies all M- 
sites within a given fixed passivation range 
R. 

(vi) An ensemble w is only active if all its 
M-sites are occupied and if none of these 
sites have been passified. 

The independence assumptions in i, ii, 
and iv are essential for the calculations. If 
they fail, the results may well be affected in 
a significant way. Models with forbidden 
neighboring P-sites are handled by taking 
Ap as a lattice with a larger unit cell than 
Ahl . In this way the essential independence 
can still be maintained (cf. Part II (II)). 

Note that v and vi prescribe that each 
ensemble is either totally passified or not 
passified at all. Furthermore a circular pat- 
tern of passivation, viz., passivation of all 
M-sites within range R from an occupied P- 
site, has been chosen. In fact the present 
theory would work with any other passiva- 
tion pattern. 

Figure 1 shows as an example the pas- 
sivation patterns of the threefold sites of a 
hexagonal surface lattice of metal atoms for 
various values of R. 

Throughout the present and the accom- 
panying paper (I I ) it is assumed that * = 1; 
i.e., all the metal atom sites are occupied. 

The number of occupied P-sites is de- 
noted by Y. According to ii, this random 
variable has a binomial distribution with pa- 
rameters Np and 8,. Thus, 

E(Y) = NP . 0,, (T’(Y) = NP . 8, 

. (1 - 9,) (Al) 
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(E = expected value; f12 = variance). The 
coverage of Ar is then given by 

E(Y/Np) = 8,) a2( YINp) = 8, 
. (1 - 0,)/N,. (A2) 

The coverage is thus almost a constant 
when Nr is large. 

The probability that an ensemble chosen 
at random from R is active will be denoted 
in. The number of active ensembles of 
shape Q is denoted Xn. Since Xn can be 
expressed as a sum over o E R of the ran- 
dom variable assuming the value 1 if w is 
active and assuming the value 0 otherwise, 
it follows that 

EGG) = iv em, (A3) 

which gives 

pn=E $$. ( ) 

Therefore pn corresponds to the concentra- 
tion of active ensembles of shape s1. In or- 
der to calculate pi an exposure number is 
introduced for each w E 0. By definition, 
this number is the number of P-sites j for 
which the occupation ofj would passify w. 

The exposure probabilities qk; k = 0, 1, 
2 7.. . , are defined by 

qk = probability that w selected at ran- 
dom from (n has exposure number k. 

(A4) 

If Nk = number of w E fl with exposure 
number k, then according to iii, 

qk=NJN k=0,1,2,. . . . (A5) 

The probability pa is given by 

m 
Pn = & q&(1 - Wk. 646) 

Note that there will only be a few values of 
k for which qk is nonzero so that the appar- 
ent infinite sum in (A6) is, in fact, finite. 
Also note that assumption iii may be re- 
placed by any other assumption on the ran- 
dom selection of ensembles of shape R. 

Formula (A6) is still valid, but (A5) can 
then no longer be used. 

In the simple case when one of the expo- 
sure probabilities is close to 1, (A6) reduces 
to the single-term expression 

Pn = (1 - 8,)k, (A7) 

where k is the typical number of P-sites 
which can passify an ensemble. 

If the passivation model is defined in 
such a way that the passivating atom has a 
distance-dependent passivation probability, 
p(r), (A7) should be replaced by an expres- 
sion of the form 

pfl = (1 - a18,)ki(l - a20Jk2 * * . 

(1 - aVOp)kv, (AS) 

where kl + k2 + . * * + k, = k and the ai’s 
are certain ensemble passivation probabiii- 
ties. Each of the ai’s is given by an expres- 
sion of the form 

a; = 1 - 11 - p(rJ][ 1 - p(r2)] * * * 

[1 - p@Jl, (A9) 

where rl, r2, . . . , r, are the distances a 
fixed P-site could have to the n-sites in an 
ensemble of shape R if at least one of these 
distances is less than or equal to the pas- 
sivation range R (in (A9) p(r) = 0 if r > R). 

For instance, if AM = Ar is the quadratic 
lattice, R the shape of 2 x 2 ensembles and 
r = a, then (A7) leads to 

pa = (1 - epy 

whereas (A9) gives 

(A101 

Pn = (1 - a18,)4(1 - a@,>*(1 
- a30p)4 (All) 

with 

al = 1 - (1 - po)(l - p~)~(l - p2) 

a2 = 1 - (1 - p1)(1 - p3) 

a3 = 1 - (1 - pd, WV 

po, pl, and p2 denoting the distance-depen- 
dent passivation probabilities. Note that 
(All) reduces to (AlO) if po = pi = p2 = 1. 

Just as (A6) can be considered as a mix- 
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ture of the expression (A7), the general for- 
mula for pn in the model with distance-de- 
pendent passivation probabilities will be a 
mixture of the expressions (A9). 

APPENDIX B 

THE LINEAR SHORT-RANGE INTERACTION 
MODEL WITH NEARESTNEIGHBOR 

PAWVATION 

In the appendix the probabilities of vari- 
ous configurations on an infinite finear lat- 
tice are derived. The sites of the lattice are 
occupied at random by passivating atoms 
but with the constraint that there is at least 
one unoccupied site between two occupied 
ones. In fact, this description is too vague 
to define the model in a mathematically un- 
ambiguous way. A main interest of this ap- 
pendix is to specify a well-defined model’ 
and to carry out exact calculations in this 
model. Additionally, of course, the results 
are needed in the main text. 

The number of different ways k-occupied 
sites can be distributed among the n-sites of 
a linear lattice (it being understood that oc- 
cupied neighbors are forbidden) is denoted 
by r,,k. Then 

rk= n-k+1 
4 i k 1 (Bl) 

(indeed, choose k sites among rz - k + 1 
linearly ordered sites, insert an unoccupied 
site to the right of every one of the k chosen 
sites, and lastly remove the site lying fur- 
thest to the right; in this way all the de- 
signed r,,k configurations may be obtained 
and the result follows). 

The infinite linear lattice, for which the 
formulas are derived below, is obtained by 
letting the finite linear lattice grow in a sym- 
metric way and such that k = en. The cal- 
culations performed in this model concern 
sites centrally situated in the lattice. The 
method of calculation is illustrated by cal- 
culating P(o), the probability that a fixed 
site is unoccupied. Of course, P(o) must be 
1 - 8, but this has to be proved using the 
model. Assume that n is very large, that k = 
On, and that the site in question is centrally 
situated in the lattice. Then P(o) may be 
approximated by the corresponding proba- 
bility in the finite n-size model; i.e., 

P(o) = 2, 
n, 

032) 

where an,k is the number of those configura- 
tions among the r,,k configurations which 
leaves the site indicated unoccupied. Con- 
sider the following configurations (indi- 
cated for the case n = 17): 

KI : xxxxxxxxoxxxxx 

K2: xxxxxxxx 2 x x x x 

K3 : XXXXXXX. l xxxx 

K4: xxxxxx xxx 

KS : XXXXXO l XX 

Kg: xxxx X 
, , 

K7: XXX. l 

I The reader should be warned that the two-dimen- 
sional case which is the one that interests us, and 
which is discussed in Section 3, has in fact not been 
specified in a mathematically satisfactory way. Such a 
specification and associated precise calculations are a 
highly delicate matter (connected with the theory of 
random Markov fields, known from certain very re- 
cent studies both of mathematical and of theoretical 
statistical physics). 

x x x [n sites, k occupied] 
x x x [n - I sites, k occupied] 
x x x [n - I sites, k occupied] 
x x x [n - 5 sites, k - 2 occupied] 
x x x [n - 5 sites, k - 2 occupied] 
x x x [n - 9 sites, k - 4 occupied] 
x x x ]n - 9 sites, k - 4 occupied] 

A bracket connecting two sites indicates 
that the sites should be considered neigh- 
bors. For the configurations KI-~7 it is still 
understood that occupied neighbors are for- 
bidden. For K~, two of the k-occupied sites 
have been fixed. Similarly for K~ and K~. 

The number of ways in which the configura- 
tion K~ can be obtained is denoted by #(K~). 
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From the definition of the configurations Ki 
it is seen that 

&,k = ++I) = #h) + #(K3) = rn-l,k 

+ #(K3), 

#(K3) = #(K4) + #(KS) = rn-S,k-2 + #(KS), 

#(Kd = #(Kg) + #(K7) = rn-9,k-4 + #(K7), 

and so on. Hence, 

an,k = rn-Lk + rn-5,k-2 + rn-9,k-4 + ’ ’ ’ 

so that (B2) becomes 

The sum in (B3) is in fact finite since 12 - 1 
- 4i 2 1 must hold; i.e., i 5 (n - 2)/4 (in the 
extreme case k = (n + 1)/2, the sum is 
empty, and hence has the value 0). 

Recalling that k = 0n (k may be taken as 
the integer part of en), it only takes some 
trivial manipulations with binomial coeffi- 
cients to deduce from (Bl) and (B3) that, as 
claimed, 

P(0) = 1 - 8. 

The following expression is obtained by the 
same method 

which, by the previous result, gives 

P ipo . .* . 9) = (1 - cl) (+g,-‘. 
” 

(B4) 

Note that for v = 1 this contains the above 
result P(0) = 1 - 8. 

Expressions for P(ooolxox) and P(x- 
ooox~oxoxo) are needed in Section 3. The 
first calculation is easy since it follows di- 
rectly from the definition of conditional 
probability that P(ooolxox) = P(ooo)lP(o). 
Then, by (B4), we have 

P(OOO(xox) = (+$)‘. (B5) 

The following expression is used to calcu- 
late the other conditional probability 

P(xooox~oxoxo) = P(ooooo)l[P(ooooo) 
+ P(0.000) + P(000.0) + P(ooooo)l 

ew 

which by the same method gives 

P(xooox(oxoxo) = kir A + ;B + C’ 

where 

Writing 

A 

A = 2 rn-5-4i,k-2i 
1 

B = 2 rn-5-4i.k-2i-I 
I 

c = 2 m-5-4i,k-2i-2. 
I 

A+2B+C 
Alrn-4,k 

= Atrn-4.k + 2Bhn-4,k-, * rn-4,k-I/rn-4,k 
+ C/r,,-4,k-2 . rn-4,k-2/m-4.k 

in the limit n + ~0 this expression becomes 

P(xooox(oxoxo) 
1-Q 

(1 - e)e 
(1 - e) + 21 - 0) (1 _ 2ey 

i - eye2 
+ (l - e, (1 - 2014 

or 

P(xooox(oxoxo) = 

( 
1 + (1 y e)e 2. (B7) 

(1 - e)2 1 
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